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Abstract—Symmetry is an important quality in drawings of
graphs, which motivates the need to establish objective metrics
for measuring the amount of symmetry present in a a drawing.
In this paper, an overview of the state of research on symmetry
metrics for graph drawings is given. Two of the approaches,
namely the node-based approach by Purchase, 2002, and the
edge-based approach by Klapaukh et al., 2018, are discussed
in more detail. The two approaches are compared both in
regard to runtime and their accuracy in detecting symmetry for
certain instances. Advantages and disadvantages of the metrics
are presented.

Index Terms—Graph Drawing, Symmetry, Aesthetics, Quality
Metrics

I. INTRODUCTION

A substantial body of work exists on aesthetic quality
criteria to enhance the readability of a graph drawing and
network visualisation [1]–[4]. Among the proposed criteria,
the number of edge crossings has been identified as the most
important criterion for evaluating the quality of a drawing [4].
However, symmetry is also a significant factor in regard to
readability [4]. Symmetric drawings of graphs can improve
the performance on readability tasks as shown by Purchase et
al. [5]. Kieffer et al. showed that reflectively symmetric graphs
are preferred by users [6]. In a user study by Marriott et al.,
symmetry – among other qualities – is identified to improve
the memorability of graphs [7]. In a large-scale study by Ball
and Geyer-Schulz, over 70 percent of analyzed graphs contain
structural symmetries [8]. Efficient symmetry metrics can not
only evaluate finished drawings but also guide automatic graph
embedding algorithms to increase the symmetry of the output
[9]. These observations motivate the need to reliably measure
symmetry in graphs.

A. Previous work

Structural symmetries in graphs are also known as graph
automorphisms [10]. The study of graph automorphisms goes
back to the 1950s [11]. The first graph embedding algorithm
using detected automorphisms was introduced by Lipton et al.
in 1985 [12].

It is important to note the difference between the topological
setting of graph automorphisms and the geometric setting,
where symmetry is measured in the context of the positions
of nodes on the plane. The latter setting is the focus of this
paper. To the author’s knowledge, six symmetry metrics for
the geometric setting have been proposed so far; an overview
is given in TABLE I. All metrics mentioned are targeted

to straight-line drawings of graphs, meaning that edges are
assumed to be drawn as line segments.

TABLE I
OVERVIEW OF THE IDENTIFIED SYMMETRY METRICS

Metric Type Runtime Source

Purchase metric Reflective O(n7) [3]
KMP metric Reflective, rotational,

translational
O(m2 ·N) [13]

Stress-based symmetry n.a. O(n logn) [15]
Force-based symmetry n.a. O(n logn) [9]
Machine learning Reflective O(n+m) [16]
Automorphism detection Reflective,

translational
O(n logn) [10]

The first symmetry metric, proposed by Purchase in
2002 [3], measures the degree of reflective symmetry. A
symmetry axis is generated for each pair of nodes. Then, for
each such symmetry axis α, the maximally-sized subgraph
that is reflectively symmetric along α is calculated. The final
metric is obtained by determining the size of the convex hull
of all such maximally-sized subgraphs.

Given the asymptotic worst-case runtime of O(n7) for the
Purchase metric and the fact that it mostly ignores edges,
Klapaukh, Marshall and Pearce propose a different metric in
an attempt to improve upon the previous approach [13]. The
metric only considers axes along edges instead of each node
pair and extends a method for symmetry detection of image
features by Loy and Eklundh [14]. It will be referred to as the
KMP metric for the remainder of this paper.

Given that stress-based graph embedding algorithms tend
to yield symmetric drawings, Welch and Kobourov propose a
metric based on stress [15]. The stress between a drawing of
a graph G = (V,E) is defined by∑

u,v∈V

(||u− v|| − d(u, v))2, (1)

where ||u− v|| refers to the Euclidean distance and d(u, v) to
the graph distance between u and v. The authors also show
that the stress-based metric cannot outperform the previous
two metrics.

Intended to be used to guide force-based graph embedding
algorithms, Xu, Yang and Gou propose a local symmetry
metric σv for each node v [9]. Let Cv be the smallest enclosing
circle containing all neighbouring nodes of v. The symmetry
metric σv is defined as the Euclidean distance between the



centre of Cv and the position of v scaled by the radius of Cv .
The symmetry value for the whole drawing is defined as the
average over all nodes, i.e., 1

n

∑
v∈V σV .

De Luca et al. propose a machine-learning approach to
detect rotational, translational and reflective symmetry [16].
Even though the authors claim to achieve high accuracy in
detecting symmetry, their approach only yields a binary value,
whereas all other identified approaches can give a qualitative
score between 0 and 1.

Meidiana et al. propose a symmetry metric for the degree
to which a drawing represents the underlying automorphism
of the graph [10], i.e., how well the drawing represents the
underlying graph structure.

In this paper, the approaches proposed by Purchase as well
as by Klapaukh et al. are discussed. Both algorithms return
a value in the range of [0, 1]. In the following sections, these
two metrics are presented in detail. Finally, the two metrics
are compared and discussed.

B. Definitions

Let G = (V,E) denote a graph consisting of a set of nodes
V and a set of edges E. Let n denote the number of nodes and
m the number of edges in G. A drawing of G maps all nodes
v ∈ V to position in the plane and all edges e = (u, v) ∈ E
to line segments starting at the position of u and ending at v.

Three types of symmetry are distinguished in literature [5].
If a pattern exhibits reflective symmetry, it is mirrored along
an axis. If a pattern exhibits rotational symmetry, if it remains
unchanged after rotating it around a central point for a given
angle α < 360◦. A pattern exhibits translational symmetry if
it remains unchanged after applying a shift transformation.

II. PURCHASE METRIC

This metric is only intended for determining reflective
symmetry. However, it is feasible to extend the approach to
different kinds of symmetries. Here, only the original metric
for reflective symmetry is considered, as it is well-defined and
extending the approach necessitates additional considerations.

An overview of the approach is depicted in Fig. 1. As a
pre-processing step, the approach elevates all crossings to, i.e.,
crossings are converted to nodes (see Fig. 1b). For each pair
of nodes in this planarised graph, an axis α is generated along
the perpendicular bisector as depicted in Fig. 1c.

For each axis α an induced subgraph Gα, consisting of all
edges mirrored along the edges, is generated (see Fig. 1d).
For an edge to be considered the mirror image of another
edge, the endpoints of the edges have to be mirrored within a
certain distance. If the subgraph exceeds a certain number of
edges, the axis is considered further, otherwise it is ignored
(see Fig. 1e). For each considered axis α, an axis-specific value
sα is calculated, which indicates the overlap in node types,
i.e., original nodes versus crossings that have been elevated to
nodes.

To obtain sα, a value se1,e2α for each mirrored pair of edge
in Gα is defined as

se1,e2α =


f2 if both pairs of endpoints are of different types
f if one pair consists of different types
1 otherwise,

(2)
where f is a fraction given as input to define the degree

to which crossings should be considered different to normal
nodes.

The value of sα is the average over all edge-specific values,
i.e.

∑
se1,e2α /|E|.

The final metric is defined as∑
α sα · area(Gα)

max(area(G),
∑

α area(Gα))
, (3)

where area() refers to the area of the convex hull of a graph.
The metric can be adapted using the following parameters:
• Threshold: This specifies the minimum number of nodes

in the symmetric subgraph Gα to consider α further.
• Tolerance: The maximum distance between two node

positions to still be considered equal. This is used to
determine whether two edges are mirror images of each
other.

• Fraction: The fraction f used to calculate the axis-
specific value sα.

As the metric considers multiple symmetry axes, it can
measure both local and global symmetries.

(a) (b) (c)

(d) (e)

Fig. 1. Step-by-step overview of obtaining symmetry axes for the Purchase
approach.

III. KMP METRIC

The Purchase metric is limited to reflective symmetry. Fur-
ther, it is computationally expensive – as an axis is generated
for each pair of nodes – and primarily focuses on the position
of nodes. Given these restrictions, Klapaugh, Marshall and
Pearce propose a new symmetry metric [13]. This metric is
based on an approach to detect symmetries in images from fea-
ture points proposed by Loy and Eklundh [14]. The approach
can detect rotational, translational and reflective symmetry,
however, it only considers points. Klapaugh, Marshall and
Pearce extend the approach to be able to incorporate line
segments as well. The metric obtains a separate value for each



type of symmetry, with no approach to obtaining an overall
metric incorporating all symmetry types.

For each pair of edges, an axis maximising the chosen
symmetry type between the two edges is added. For estimating
reflective symmetry, the KMP metric adds an additional sym-
metry axis for the perpendicular bisector of the two endpoints
of each edge, as well as an axis parallel to the edge. For
rotational symmetry, an axis is added at the midpoint of each
edge.

For each generated axis, a score sα between 0 and 1 is
calculated. The score of an axis indicates how similar the two
edges are in regard to their length and orientation. The score
of an axis generated from a single edge is always 1.

Axes are then quantised, axes with equal quantised position
and rotation are grouped and their individual scores are
summed up.

Instead of considering all axes, as for the Purchase metric,
here, only the top N axes are chosen based on the score sα.
The final metric consists of the percentage of edges that voted
for the top N axes:∑

α number of edges that voted for α
N · number of lines

(4)

A trade-off between global and local symmetry can be made
by appropriately choosing a value for the parameter N . With
lower values of N , only the stronger global symmetry axes are
considered; when considering more axes, smaller symmetries
are evaluated as well.

IV. COMPARISON

To compare the performance of the metrics, both have been
implemented in Python. The implementation is published as
part of the gdMetriX package on the Python package index1.
For obtaining the presented results, version 0.0.1 was used.
The implementation for the KMP metric strictly follows the
Java implementation by the original authors2. In this section,
both the runtime as well as the agreement of both approaches
are compared.

A. Runtime comparison

The runtime was compared using 720 randomized Erdös-
Rényi graphs with a node size in the range [0, 80], and edge
densities of 10%, 20%, 30%, . . . , 80%, 90%. The embedding
was generated by assigning random uniformly distributed node
positions within [0, 1]2. Both algorithms were executed on an
Intel® Core™ i5-8250U with 1.6 GHz. A cutoff time of 12
seconds was chosen. The parameters of both algorithms are
left to the default values of the Python package. This includes
the number of axes N selected by the KMP approach, which
is set to N = 1.

The results of the experiment can be seen in Fig. 2.
The KMP metric performs better than the Purchase metric
independently of the density of the instances. The Purchase

1See https://pypi.org/project/gdMetriX/, the documentation can be found at
https://livus.github.io/gdMetriX/

2See https://github.com/klapaukh/GraphAnalyser.
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Fig. 2. A comparison in runtime between the metrics.

metric exceeds the time limit of 12 seconds even for small
instances consisting of less than 20 nodes. This is also the
case for sparse instances.

However, the approach by Purchase – which is primarily
concerned about nodes only – still slows down with an
increasing number of edges. The time limit is exceeded at
n = 16 for a density of 10% and at n = 8 for a density
of 90%. This aligns with the fact that the asymptotic runtime
of O(n7) is only a worst-case asymptotic runtime – the best-
case runtime is stated as O(n5) by Purchase [3] – and the
number of considered axes depends on the number of edges
in conjunction with the threshold parameter.

As expected, the KMP metric slows down with an increasing

https://pypi.org/project/gdMetriX/
https://livus.github.io/gdMetriX/
https://github.com/klapaukh/GraphAnalyser


number of edges as well. The difference between the three
types of symmetries only consists of a constant factor.

B. Agreement

No publicly available annotated dataset of graph drawings
with user-evaluated symmetry values exists, which could be
used to evaluate the quality and precision of the investigated
metrics. To investigate the agreement on symmetry between
the two metrics instead, a set of Erdös-Rényi graphs was gen-
erated. The graphs were embedded using the Spring embedder
provided by the Python package networkX version 3.33. The
dataset contains 255 graphs with the number of nodes per
graph uniformly distributed in the range of [5, 11]. The edge
density is uniformly distributed in the range of [0, 1]. The
values for the Purchase metric are compared to the KMP
metric for reflective symmetry only, as this is the only type of
symmetry supported by both metrics.

The results for both metrics vary significantly depending
on the chosen parameters. Unfortunately, the authors do not
give a guideline for choosing reasonable values. It is left to
the user to investigate suitable values for a given use case.
For the results presented in this section, a tolerance of 0.15, a
threshold of 10, and a fraction of 0.5 was used for the Purchase
metric. For the KMP metric, the default values specified in the
original Java implementation were used.

The two metrics express a Pearson’s correlation coefficient
of 0.07. A scatter plot of the two metrics can be seen in Fig. 3.
While the Purchase metric outputs a symmetry estimate in the
range of 0.6 to 0.85 for most instances, the KMP symmetry
varies strongly. For the tested parameters and input instances,
the metrics correlate only weakly. The reason for the weak
agreement of the metrics might be manifold, beginning with
poorly chosen parameters.

To better evaluate the metrics’s disagreement, the correlation
between symmetry and other graph properties is measured (see
Fig. 4 for scatter plots and TABLE II for Pearson’s correlation
factors). In total, six different measures are compared, which
are defined as follows.

• Nodes: This measure is the number of nodes in the graph,
i.e., n.

• Edges: The defines the total number of edges in the graph,
i.e., m.

• Density: The density is defined as the percentage of edges
present compared to the maximum amount of possible
edges, i.e., m

n2 .
• Bounding box: This defines the size of the smallest axes-

aligned bounding box containing the graph.
• Convex hull: This defines the area of the convex hull of

the graph.
• Concentration: The concentration of a graph as defined

by Taylor and Rodgers [1] measures how evenly dis-
tributed nodes are in the plane.

With a correlation factor of 0.70 (compared to 0.0008 for the
KMP metric), the Purchase metric tends to rate denser graphs

3See https://networkx.org/ for details on networkX.
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Fig. 3. Correlation between the Purchase and the KMP metric depicted in a
scatter plot.

TABLE II
PEARSON’S CORRELATION FACTORS BETWEEN DIFFERENT METRICS AND

THE PURCHASE SYMMETRY, THE KMP SYMMETRY AS WELL AS THE
RATIO OVER BOTH SYMMETRY METRICS.

Metric Purchase KMP Ratio

Nodes 0.0639 -0.0071 0.0784
Edges 0.4969 0.0787 0.2249
Density 0.6982 0.0008 0.1343
Bounding box -0.4223 0.1424 0.0915
Convex Hull -0.4041 0.1168 0.0230
Concentration -0.1598 -0.1400 0.0248
Crossings 0.1957 0.1857 0.2342

higher. This can be explained by the increasing number of
symmetric subgraphs detected exceeding the threshold number
of nodes. Further, the Purchase metric negatively correlates
with both the size of an axis-aligned bounding box as well as
the size of the convex hull of the graph. This is expected as
the metric is scaled by the size of the graph (see Eq. 3).

The KMP metric exhibits no strong correlation between any
of the investigated graph measures. Only a slight correlation
is detectable for the size of the bounding box and the convex
hull, with a Pearson’s factor of 0.14 and 0.12 respectively. No
clear correlation is visible for the rest of the graph measures.
Similarly, the number of nodes and the number of crossings
only correlate weakly with the measured reflective symmetry.
When looking at the ratio of the Purchase metric over the
KMP metric, no strong correlations are detectable.

C. Accuracy and robustness

The metrics have previously been compared in the context
of a user study by Welch and Kobourov [15]. They concluded
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Fig. 4. Correlation between the symmetry metrics and other graph properties.

that participants agree more with the judgements of the Pur-
chase metric than the KMP metric. In addition, they claim the
following flaws:

• The Purchase metric generates a large number of axes,
more than a human is likely to perceive.

• Both metrics are not robust to scale, meaning that rescal-
ing a graph changes the symmetry metric. While rescaling
can be offset by the threshold parameter for the Purchase
metric, this is not immediately possible for the KMP
metric.

• Neither metric is resilient to noise, meaning small adjust-
ments might change the predicted symmetry vastly. This
can be explained by the hard cutoff when two points are
considered close enough to be equal. The authors suggest
using a smooth loss function instead.

The claims are extended by the following statements:

• When investigating graphs where the two metrics strongly
disagree, it can be observed that the Purchase metric
tends to rate graphs with a higher node-to-convex-hull
proportion higher (see Fig. 5). This is likely due to a
smaller area leading to a smaller denominator in Eq.
3, resulting in an overall higher score, as discussed in
Section IV-B.

• The KMP metric does not provide a solution to resolve
conflicts between axes with equal scores. As the approach
generates m axes with the maximum score of 1, equal
scores might occur often – especially if little to none of
the axes are grouped. This leads to varying results for the
same input instance depending on the chosen axis.

• As crossings are ignored in the KMP metric, overlayed
symmetric structures are still considered symmetric (see
Fig. 7). This issue is resolved by the Purchase metric as
crossings are converted to nodes beforehand.

(a) (b)

Fig. 5. Two graphs, (a) one where the Purchase metric is higher than the
KMP metric, and (b) one where the KMP metric is higher than the Purchase
metric.

• Per definition, the Purchase metric is mostly concerned
with node positions. It only asserts if edges are present
in a set of reflectively symmetric nodes, not considering
between what specific nodes they are present. This leads
to scenarios where completely different subgraphs – only
sharing the same node positions and number of edges –
lead to the same axis score as both have the same convex
hull area and axis-specific symmetry value sα. See Fig. 6
for an example.

V. EVALUATION

Both metrics can be considered rather expensive regard-
ing their asymptotic runtime. Purchase claims an asymptotic
runtime of O(n7) for their metric. The KMP metric can be
implemented in O(m2 ·N) time. The differences in theoretic
runtime are observable in the runtime experiments. Even for
dense graphs, the KMP metric is considerably faster.

The presented metrics have their unique set of advantages
and disadvantages. Neither metric is stable in regard to the
chosen parameter values, making the selection of appropriate



α
(a)

α
(b)

Fig. 6. Two symmetric subgraphs along an axis Gα with the same vertex
positions and the same number of edges.

Fig. 7. Two reflectively symmetric graphs overlayed to build a non-symmetric
combined drawing.

values a non-trivial task. The Purchase metric incorporates a
multitude of axes into the final score than any human is likely
to perceive. The KMP metric, on the other hand, is not robust
to scale.

To try to compensate for the disadvantages of each approach
and begin to develop an improved metric, it is beneficial
that both metrics are similar in their modularisation into
distinct steps. First, a set of potential axes is calculated, after
which an axis-specific score is obtained. Then, axes considered
irrelevant are dropped. As a final step, a global symmetry
score is obtained from the axes that are left. Both metrics
have their unique advantages and drawbacks at each step. The
modularisation makes it possible to choose ideas from the
approach best suited to a specific use case at any given step.
For example, pre-processing the crossings can be done for
the KMP metric as well. Further, the Purchase metric might
benefit from borrowing the idea of merging close axes or only
picking the top N axes at the end.

A study by De Luca et al. suggests that vertical reflective
axes are most discernible, followed by horizontal reflective
axes and then translational symmetries [5]. A symmetry
metric aimed to mimic human perception should prioritise
these specific symmetries accordingly. However, neither of the
presented metrics incorporates the angle, position or type of an
axis into the score. Additionally, a human is unlikely to per-
ceive the three types of symmetries independently, suggesting
a need for a methodology that integrates all symmetry types
into a unified metric.

VI. CONCLUSION

Both metrics are improvable in their accuracy in detecting
symmetry. In the randomised dataset used, the two metrics did
not agree on symmetry, suggesting that they are not capable
of predicting symmetry reliably. While the Purchase metric
outperformed the KMP metric in a user study [15], it is only
capable of detecting reflective symmetry. To further investigate
the unique challenges of both metrics, larger datasets and a
defined approach to obtain metric parameters are needed.

In conclusion, further research is needed to investigate
and improve upon the discussed metrics. Both metrics are
adaptable in each step of the process to try to improve upon
the identified flaws.
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